RLPy: A Value-Function-Based Reinforcement Learning Framework for Education and Research

Alborz Geramifard
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 – USA
Alborz Geramifard@CSAIL.MIT.EDU

Christoph Dann
Machine Learning Department, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213 – USA
Christoph Dann@CMU.EDU

Robert H. Klein
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 – USA
Robert H. Klein@ALUM.MIT.EDU

William Dabney
Amazon.com,
440 Terry Ave. N, Seattle, WA 98109 – USA
William Dabney@AMAZON.COM

Jonathan P. How
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA 02139 – USA
Jonathan P. How@MIT.EDU

Editor: Geoff Holmes

Abstract

RLPy is an object-oriented reinforcement learning software package with focus on value-function-based methods using linear function approximation and discrete actions. The framework was designed for both education and research purposes. It provides a rich library of fine-grained, easily exchangeable components for learning agents (e.g., policies or representations of value functions), facilitating recent increased specialization in reinforcement learning. RLPy is written in Python to allow fast prototyping but is also suitable for large-scale experiments through its inbuilt support for optimized numerical libraries and parallelization. Code profiling, domain visualizations, and data analysis are integrated in a self-contained package available under the Modified BSD License at http://acl.mit.edu/rlpy. All these properties allow users to compare various reinforcement learning algorithms with little effort.

Keywords: reinforcement learning, value-function, empirical evaluation, open source

1. Introduction

An integral part of most introductory artificial intelligence courses are value-function-based methods using linear function approximation for solving Markov decision processes (such as

1. The first three authors contributed equally to this work.
2. The majority of this work was done prior to Amazon involvement of the authors. This paper does not reflect the views of the Amazon company.

©2015 Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and Jonathan P. How.
linear Q-learning or SARSA). In addition, many researchers build upon this well-understood and powerful framework and aim at improving existing methods by, for example, feature learning (Keller et al., 2006; Parr et al., 2007; Geramifard et al., 2011), or policies that better trade off exploration and exploitation (for example Nouri and Littman, 2009; Jaksch et al., 2010; Li, 2012).

The need to unify and increase reusability of software packages for reinforcement learning research has been widely discussed (Tanner and White, 2009; Schaul et al., 2010), and many successful tools have been created (Tanner and White, 2009; Schaul et al., 2010; Degris, 2013; de Comite, 2006). However, it is desirable to have a software framework that is 1) easily accessible by novices so that they may compare and understand existing algorithms, and 2) efficient for researchers who desire to perform large scale experiments and advance the state-of-the-art.

By focusing on the prominent class of value-function-based methods with linear function approximation using discrete actions, RLPy aims at being such a software framework that provides simple and convenient tools for conducting sequential decision making experiments. In the following, we present the main features of RLPy and highlight those that distinguish it from existing frameworks.

2. Existing Frameworks

The following existing software packages have some overlap with RLPy:

1. RL-Toolbox: (Neumann, 2005) C++ RL toolbox focusing on continuous state-spaces
2. CLSquare: (Riedmiller et al., 2012) C++ RL framework focused on interfaces with several robotics
3. libPQ: (Aberdeen, 2007) RL library focused on high-performance policy-gradient algorithm implementations
4. rlrb (Frezza-Buet and Geist, 2013): Template-based C++ RL library for value-function methods
5. rt-explorero-pkg (Hester, 2013) ROS package for RL algorithms
6. JRLF: (Kochenderfer, 2006) Small-scale Java-Framework for RL experiments
7. PIQLE: (de Comite, 2006) Java-Framework for RL experiments
8. RLPark: (Degris, 2013) Java reinforcement learning library
9. RLLib: (Abeyruwan, 2013) Port of RL-Park into C++
11. ApproxRL: (Busoniu, 2010) Matlab Toolbox with RL and dynamic programming algorithms
12. MMLF: (Metzen and Edgington, 2011) Python-based framework for reinforcement learning
13. PyBrain (Schaul et al., 2010): Machine learning library focused on neural networks with RL support

For the sake of brevity, we do not compare RLPy against each of the existing frameworks in detail but highlight key differences in the following section by referencing the list above.

3. Why RLPy?

Improved Granularity of Agents with Linear Value Functions. RL has advanced significantly over the past decade, leading researchers to narrow their focus towards specialized, independent aspects of RL agents, such as approximate function representations, exploration schemes, and learning rates. The structure of numerous existing frameworks (2, 6, 7, 10, 12) does not properly account for this increased specialization and makes it cumbersome to exchange, for example, the way the value function is represented in a learning agent. RLPy addresses this issue by separating these components into exchangeable classes (shown as green boxes in Figure 1) and other minor components such as learning rates into separate
import rlpy

Domain
domain = rlpy.Domains.InfCartPoleBalance()

Agent
representation = rlpy.Representations.Tabular(domain, discretization=20)
policy = rlpy.Policies.eGreedy(representation, epsilon=0.1)
agent = rlpy.Agents.SARSA(policy, representation, domain.discount_factor)

Experiment
experiment = rlpy.Experiments.Experiment(agent, domain, max_steps=100)
experiment.run()
experiment.save()
“Batteries Included” – Many Existing Components and Benchmarks. RLPy includes an ever-growing repository of components which may be combined to form new RL agents. While many frameworks (1, 3, 4, 6) only include classic benchmark domains such as *PuddleWorld* or an *Inverted Pendulum on Cart*, RLPy supplies a large number of more challenging domains such as *HIV-Treatment*, *Hovering a Helicopter*, and *Pac-Man*. In addition to implementations of most value-function-based RL algorithms, RLPy includes experimental support for dynamic programming methods that require full domain knowledge but yield optimal policies. This is especially useful as a baseline for comparison with (often sub-optimal) policies generated by RL agents.

Ease of Use and Development. Numerous tools are shipped with RLPy that facilitate ease of use and efficiency. One example is the code profiler, which produces a visual runtime graph of the source code (c.f. Figure 3 right) and identifies slow routines. This information allows the researcher to reduce the runtime of an algorithm with minimal effort and discourages premature runtime optimization. Additionally, every RLPy domain has a visualization, an important feature lacking in other frameworks (3, 4, 7). These visuals help students and researchers quickly assess and gain intuition about the algorithm and domain behavior.

Automation of Experiments. RLPy aims to promote reproducible research. To this end, it provides a suite of tools to automate the entire experiment pipeline. For example, RLPy allows concise specification of experiment settings (see Figure 2) and automated and efficient hyperparameter optimization with the *hyperopt* package (Yamins et al., 2013). Researchers can share their experimental setups by publishing short settings files, and colleagues can reproduce the results when running the scripts independent of their hardware or operating system. Additionally, RLPy experiments are natively parallelizable. Once parameters are selected, the user simply specifies the number of CPU cores RLPy can utilize for multiple experiments to test statistical significance. RLPy enables further scaling by switching seamlessly from a single machine to a job-based cluster (e.g. HTCondor) while ensuring results remain identical across varying hardware. RLPy also provides automated tools for generation of final publication-ready plots of results (see Figure 3 left); researchers need only specify the quantities that should appear on the plot. To the best of our knowledge this degree of automation of the entire experimentation pipeline is unique to RLPy.

4. Conclusion

RLPy is a new reinforcement learning framework focused on value-function-based reinforcement learning using linear function approximation with discrete actions. It reflects recent developments in the field. RLPy simplifies the construction of learning agents and makes it easier for novices and experts alike to evaluate and compare algorithms, representations, environments, and other RL components and modules, and to construct their own. It also provides many tools for conducting reproducible experiments from initial prototyping to final plotting. The framework is entirely open-source and all contributions are welcome and encouraged.
Figure 3: RLPy sample outputs of RLPy plotting (left) and profiling (right) tools: A portion of the profiling graph of the example code (Figure 2) in which the green box shows the statistics of executing the `learn` function 10^3 times. It required 37.38% of the CPU-time for completion, out of which its main body was responsible only for 7.15% of the computation while the rest was spent in other called functions (shown as output arrows).

Acknowledgments: Many thanks to all those who helped develop and test RLPy in its early stages, especially David E. Williams. Thanks also to the ever-growing body of students and researchers who continue to improve and contribute to the project.

References

