Journal of Machine Learning Research x (2015) x-xx Submitted 11/13; Revised 11/14; Published 01/15

RLPy: A Value-Function-Based Reinforcement Learning
Framework for Education and Research

Alborz Geramifard!? AGFQCSAIL.MIT.EDU
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 — USA

Christoph Dann' CDANNQCMU.EDU
Machine Learning Department, Carnegie Mellon University,

5000 Forbes Ave., Pittsburgh, PA 15213 — USA

Robert H. Klein' BOBKLEIN2@ALUM.MIT.EDU
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 — USA

William Dabney? WDDABNEY@AMAZON.COM
Amazon.com,

440 Terry Ave. N, Seattle, WA 98109 — USA

Jonathan P. How JHOW@MIT.EDU
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 — USA

Editor: Geoff Holmes

Abstract

RLPy is an object-oriented reinforcement learning software package with focus on value-
function-based methods using linear function approximation and discrete actions. The
framework was designed for both education and research purposes. It provides a rich li-
brary of fine-grained, easily exchangeable components for learning agents (e.g., policies
or representations of value functions), facilitating recent increased specialization in re-
inforcement learning. RLPy is written in Python to allow fast prototyping but is also
suitable for large-scale experiments through its inbuilt support for optimized numerical
libraries and parallelization. Code profiling, domain visualizations, and data analysis
are integrated in a self-contained package available under the Modified BSD License at
http://acl.mit.edu/rlpy. All these properties allow users to compare various reinforce-
ment learning algorithms with little effort.

Keywords: reinforcement learning, value-function, empirical evaluation, open source

1. Introduction

An integral part of most introductory artificial intelligence courses are value-function-based
methods using linear function approximation for solving Markov decision processes (such as

1. The first three authors contributed equally to this work.
2. The majority of this work was done prior to Amazon involvement of the authors. This paper does not
reflect the views of the Amazon company.

©2015 Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and Jonathan P. How.

http://acl.mit.edu/rlpy

GERAMIFARD, DANN, KLEIN, DABNEY AND HOw

linear Q-learning or SARSA). In addition, many researchers build upon this well-understood
and powerful framework and aim at improving existing methods by, for example, feature
learning (Keller et al., 2006; Parr et al., 2007; Geramifard et al., 2011), or policies that
better trade off exploration and exploitation (for example Nouri and Littman, 2009; Jaksch
et al., 2010; Li, 2012).

The need to unify and increase reusability of software packages for reinforcement learning
research has been widely discussed (Tanner and White, 2009; Schaul et al., 2010), and many
successful tools have been created (Tanner and White, 2009; Schaul et al., 2010; Degris, 2013;
de Comite, 2006). However, it is desirable to have a software framework that is 1) easily
accessible by novices so that they may compare and understand existing algorithms, and
2) efficient for researchers who desire to perform large scale experiments and advance the
state-of-the-art.

By focusing on the prominent class of value-function-based methods with linear function
approximation using discrete actions, RLPy aims at being such a software framework that
provides simple and convenient tools for conducting sequential decision making experiments.
In the following, we present the main features of RLPy and highlight those that distinguish
it from existing frameworks.

2. Existing Frameworks

The following existing software packages have some overlap with RLPy:

RL-Toolboz: (Neumann, 2005) C++ RL toolbox focusing on continuous state-spaces

CLSquare: (Riedmiller et al., 2012) C++ RL framework focused on interfaces with several robotics

libPG: (Aberdeen, 2007) RL library focused on high-performance policy-gradient algorithm implementations
rllib (Frezza-Buet and Geist, 2013): Template-based C++ RL library for value-function methods
rl-texplore-ros-pkg: (Hester, 2013) ROS package for RL algorithms

JRLF: (Kochenderfer, 2006) Small-scale Java-Framework for RL experiments

PIQLE: (de Comite, 2006) Java-Framework for RL experiments

RLPark:(Degris, 20138) Java reinforcement learning library

RLLib: (Abeyruwan, 2013) Port of RLPark into C++

RL-Glue, RL-Library: (Tanner and White, 2009) Protocol for RL experiments and reference implementations
. ApprozRL: (Busoniu, 2010) Matlab Toolbox with RL and dynamic programming algorithms

. MMLF: (Metzen and Edgington, 2011) Python-based framework for reinforcement learning

. PyBrain (Schaul et al., 2010): Machine learning library focused on neural networks with RL support

© 0N oW

e

For the sake of brevity, we do not compare RLPy against each of the existing frameworks
in detail but highlight key differences in the following section by referencing the list above.

3. Why RLPy?

Improved Granularity of Agents with Linear Value Functions. RL has advanced
significantly over the past decade, leading researchers to narrow their focus towards spe-
cialized, independent aspects of RL agents, such as approximate function representations,
exploration schemes, and learning rates. The structure of numerous existing frameworks (2,
6, 7, 10, 12) does not properly account for this increased specialization and makes it cumber-
some to exchange, for example, the way the value function is represented in a learning agent.
RLPy addresses this issue by separating these components into exchangeable classes (shown
as green boxes in Figure 1) and other minor components such as learning rates into separate

RLPY: A REINFORCEMENT LEARNING FRAMEWORK FOR EDUCATION AND RESEARCH

Experiment

L Policy HLeaming Agent Gt =
™

v Domain

{ \
RL Agent Representation | “t+1>7t+1
Q,V

Figure 1: RLPy framework - Green components constitute an RL agent which did not exist
as separate components in previous RL frameworks. The experiment module handles the
interaction between the agent and the domain; gray arrows depict the information flow in
a conventional RL framework (See e.g. Sutton and Barto, 1998).

import rlpy
Domain

domain = rlpy.Domains.InfCartPoleBalance ()

Agent #H###

representation = rlpy.Representations.Tabular(domain, discretization=20)
policy = rlpy.Policies.eGreedy(representation, epsilon=0.1)

agent = rlpy.Agents.SARSA(policy, representation, domain.discount_factor)
Experiment

experiment = rlpy.Experiments.Experiment (agent, domain, max_steps=100)

experiment .run ()
experiment .save ()

Figure 2: RLPy code for setting up and running an experiment: SARSA learning for 100, 000
steps how to balance an inverted pole on a cart while following an e-greedy policy. The
representation is a discretized table lookup with 20 bins spaced uniformly in each dimension.

functions. This division reduces implementation effort, promotes reusability, and facilitates
automated testing. Code for an example experiment that exploits this modularity is shown
in Figure 2. In addition, the assumption of linearly parameterizing the value function allows
RLPy to provide many tools and helpers for designing state features. For example, in large
MDPs where using a tabular representation is infeasible, the IndependentDiscretization
representation creates a set features by ignoring dependency among dimensions of the state
space. Further dependency between such features can be added to the representation using
the iFDD (incremental feature dependency discovery) module.

Rapid Prototyping with Python. RLPy is fully object-oriented and based primarily on
the Python language (van Rossum and de Boer, 1991). Low-level, computationally-intensive
tools are implemented in Cython (a compiled and typed version of Python) or C++. In
contrast to other packages (1 — 9) written solely in C++ or Java, this approach leverages
the user-friendliness, conciseness, and portability of Python while supplying computational
efficiency where needed. This combination allows researchers to prototype new ideas quickly
and comfortably without sacrificing the computing speed necessary to conduct large-scale
experiments. In addition, the Python-based approach of RLPy is particularly suited for
education as it does not require any proprietary software (in contrast to 11).

GERAMIFARD, DANN, KLEIN, DABNEY AND HOw

“Batteries Included” — Many Existing Components and Benchmarks. RLPy
includes an ever-growing repository of components which may be combined to form new
RL agents. While many frameworks (1, 3, 4, 6) only include classic benchmark domains
such as PuddleWorld or an Inverted Pendulum on Cart, RLPy supplies a large number of
more challenging domains such as HIV-Treatment, Hovering a Helicopter, and Pac-Man. In
addition to implementations of most value-function-based RL algorithms, RLPy includes
experimental support for dynamic programming methods that require full domain knowl-
edge but yield optimal policies. This is especially useful as a baseline for comparison with
(often sub-optimal) policies generated by RL agents.

Ease of Use and Development. Numerous tools are shipped with RLPy that facili-
tate ease of use and efficiency. One example is the code profiler, which produces a visual
runtime graph of the source code (c.f. Figure 3 right) and identifies slow routines. This
information allows the researcher to reduce the runtime of an algorithm with minimal effort
and discourages premature runtime optimization. Additionally, every RLPy domain has a
visualization, an important feature lacking in other frameworks (3, 4, 7). These visuals help
students and researchers quickly assess and gain intuition about the algorithm and domain
behavior.

Automation of Experiments RLPy aims to promote reproducible research. To this
end, it provides a suite of tools to automate the entire experiment pipeline. For example,
RLPy allows concise specification of experiment settings (see Figure 2) and automated and
efficient hyperparameter optimization with the hyperopt package (Yamins et al., 2013).
Researchers can share their experimental setups by publishing short settings files, and col-
leagues can reproduce the results when running the scripts independent of their hardware
or operating system. Additionally, RLPy experiments are natively parallelizeable. Once
parameters are selected, the user simply specifies the number of CPU cores RLPy can uti-
lize for multiple experiments to test statistical significance. RLPy enables further scaling
by switching seamlessly from a single machine to a job-based cluster (e.g. HTCondor) while
ensuring results remain identical across varying hardware. RLPy also provides automated
tools for generation of final publication-ready plots of results (see Figure 3 left); researchers
need only specify the quantities that should appear on the plot. To the best of our knowledge
this degree of automation of the entire experimentation pipeline is unique to RLPy.

4. Conclusion

RLPy is a new reinforcement learning framework focused on value-function-based reinforce-
ment learning using linear function approximation with discrete actions. It reflects recent
developments in the field. RLPy simplifies the construction of learning agents and makes
it easier for novices and experts alike to evaluate and compare algorithms, representations,
environments, and other RL components and modules, and to construct their own. It also
provides many tools for conducting reproducible experiments from initial prototyping to
final plotting. The framework is entirely open-source and all contributions are welcome and
encouraged.

RLPY: A REINFORCEMENT LEARNING FRAMEWORK FOR EDUCATION AND RESEARCH

1.86%
118466x

3000

2500 GeneralTools:455:findElemArray 1D TDControlAgent:31:learn
1.86% 37.38%
(1.22%) (7.15%)
2000 118466x 100000x

Steps

5.14% 0.56%
200000% 100000%

4.01% 2.18%
100000% 100000x

1500

~:0:<numpy.core._dotblas.dot> Agent:122:updateAlpha GeneralTools:178:count_nonzero
1000 0.56% 4.01% 2.18%

(0.56%) (1.96%) (0.52%)

20000 40000 60000 80000 100000 100000x 100000% 100000x
Learning Steps

Figure 3: RLPy sample outputs of RLPy plotting (left) and profiling (right) tools: A
portion of the profiling graph of the example code (Figure 2) in which the green box shows
the statistics of executing the learn function 10° times. It required 37.38% of the CPU-
time for completion, out of which its main body was responsible only for 7.15% of the
computation while the rest was spent in other called functions (shown as output arrows).

Acknowledgments: Many thanks to all those who helped develop and test RLPy in
its early stages, especially David E. Williams. Thanks also to the ever-growing body of
students and researchers who continue to improve and contribute to the project.

References

Douglas Aberdeen. LibPGRL: A high performance reinforcement learning library in C++,
2007. URL https://code.google.com/p/libpgrl.

Saminda Abeyruwan. RLLib Lightweight Standard and On/Off Policy Reinforcement
Learning Library (C++), 2013. URL http://web.cs.miami.edu/home/saminda/rllib.
html.

Lucian Busoniu. ApproxRL: A Matlab Toolbox for Approximate RL and DP, 2010. URL
http://busoniu.net/files/repository/readme_approxrl.html.

Francesco de Comite. PIQLE: A Platform for Implementation of Q-Learning Experiments,
2006. URL http://piqle.sourceforge.net.

Thomas Degris. RLPark, 2013. URL http://rlpark.github.io.

Herve Frezza-Buet and Matthieu Geist. A C++ Template-Based Reinforcement Learning
Library : Fitting the Code to the Mathematics. Journal of Machine Learning Research,
14:625-628, 2013.

Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How. Online
discovery of feature dependencies. In Lise Getoor and Tobias Scheffer, editors, Interna-
tional Conference on Machine Learning (ICML), pages 881-888. ACM, June 2011. ISBN
978-1-4503-0619-5.

https://code.google.com/p/libpgrl
http://web.cs.miami.edu/home/saminda/rllib.html
http://web.cs.miami.edu/home/saminda/rllib.html
http://busoniu.net/files/repository/readme_approxrl.html
http://piqle.sourceforge.net
http://rlpark.github.io

GERAMIFARD, DANN, KLEIN, DABNEY AND HOw

Todd Hester. rl-texplore-ros-pkg: Reinforcement learning framework, agents, and
environments with ROS interface, 2013. URL https://code.google.com/p/
rl-texplore-ros-pkg.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research (JMLR), 11:1563-1600, 2010.

Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic Basis Function Construction
for Approximate Dynamic Programming and Reinforcement Learning. In International
Conference on Machine Learning (ICML), 2006.

Mykel Kochenderfer. JRLF: Java Reinforcement Learning Framework, 2006. URL http:
//mykel .kochenderfer.com/jrlf.

Lihong Li. Sample complexity bounds of exploration. In Marco Wiering and Martijn van
Otterlo, editors, Reinforcement Learning: State of the Art. Springer Verlag, 2012.

Jan Hendrik Metzen and Mark Edgington. Maja machine learning framework, 2011. URL
http://mmlf.sourceforge.net.

Gerhard Neumann. The Reinforcement Learning Toolbox , Reinforcement Learning for
Optimal Control Tasks. PhD thesis, TU Graz, 2005.

Ali Nouri and Michael L. Littman. Multi-resolution exploration in continuous spaces. In
Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Advances
in Neural Information Processing Systems (NIPS), pages 1209-1216. MIT Press, 20009.

Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing
Feature Generation for Value-Function Approximation. In International Conference on
Machine Learning (ICML), 2007.

Martin Riedmiller, Manuel Blum, and Thomas Lampe. CLS?: Closed Loop Simulation
System, 2012. URL http://ml.informatik.uni-freiburg.de/research/clsquare.

Tom Schaul, Justin Bayer, Daan Wierstra, Yi Shun, Martin Felder, Frank Sehnke, Thomas
Riickstief, and Jirgen Schmidhuber. PyBrain. Journal of Machine Learning Research
(JMLR), 11:743-746, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction,
volume 9 of Adaptive computation and machine learning. MIT Press, 1998. ISBN
9780262193986.

Brian Tanner and Adam White. RL-Glue : Language-independent software for
reinforcement-learning experiments. Journal of Machine Learning Research (JMLR),
10:2133-2136, September 2009.

Guido van Rossum and Jelke de Boer. Interactively testing remote servers using the python
programming language. CWI Quarterly, 4(4):283-303, december 1991. Amsterdam.

https://code.google.com/p/rl-texplore-ros-pkg
https://code.google.com/p/rl-texplore-ros-pkg
http://mykel.kochenderfer.com/jrlf
http://mykel.kochenderfer.com/jrlf
http://mmlf.sourceforge.net
http://ml.informatik.uni-freiburg.de/research/clsquare

RLPY: A REINFORCEMENT LEARNING FRAMEWORK FOR EDUCATION AND RESEARCH

Daniel Yamins, David Tax, and James S. Bergstra. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In Sanjoy
Dasgupta and David Mcallester, editors, International Conference on Machine Learning
(ICML), volume 28, pages 115-123. JMLR Workshop and Conference Proceedings, 2013.

	Introduction
	Existing Frameworks
	Why RLPy?
	Conclusion

